Unified Backpropagation for Multi-Objective Deep Learning

نویسنده

  • Arash Shahriari
چکیده

A common practice in most of deep convolutional neural architectures is to employ fully-connected layers followed by Softmax activation to minimize cross-entropy loss for the sake of classification. Recent studies show that substitution or addition of the Softmax objective to the cost functions of support vector machines or linear discriminant analysis is highly beneficial to improve the classification performance in hybrid neural networks. We propose a novel paradigm to link the optimization of several hybrid objectives through unified backpropagation. This highly alleviates the burden of extensive boosting for independent objective functions or complex formulation of multiobjective gradients. Hybrid loss functions are linked by basic probability assignment from evidence theory. We conduct our experiments for a variety of scenarios and standard datasets to evaluate the advantage of our proposed unification approach to deliver consistent improvements into the classification performance of deep convolutional neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view, Multi-label Learning with Deep Neural Networks

Deep learning is a popular technique in modern online and offline services. Deep neural network based learning systems have made groundbreaking progress in model size, training and inference speed, and expressive power in recent years, but to tailor the model to specific problems and exploit data and problem structures is still an ongoing research topic. We look into two types of deep ‘‘multi-’...

متن کامل

Generalized K-fan Multimodal Deep Model with Shared Representations

Multimodal learning with deep Boltzmann machines (DBMs) is an generative approach to fuse multimodal inputs, and can learn the shared representation via Contrastive Divergence (CD) for classification and information retrieval tasks. However, it is a 2-fan DBM model, and cannot effectively handle multiple prediction tasks. Moreover, this model cannot recover the hidden representations well by sa...

متن کامل

Learning in the Deep-Structured Conditional Random Fields

We have proposed the deep-structured conditional random fields (CRFs) for sequential labeling and classification recently. The core of this model is its deep structure and its discriminative nature. This paper outlines the learning strategies and algorithms we have developed for the deep-structured CRFs, with a focus on the new strategy that combines the layer-wise unsupervised pre-training usi...

متن کامل

Online Deep Learning: Learning Deep Neural Networks on the Fly

Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch learning setting, which requires the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream form. We aim to address an open challenge of “Online Deep Learning” (ODL) for learning DNNs on the fly in an on...

متن کامل

Multi-Modal Hybrid Deep Neural Network for Speech Enhancement

Deep Neural Networks (DNN) have been successful in enhancing noisy speech signals. Enhancement is achieved by learning a nonlinear mapping function from the features of the corrupted speech signal to that of the reference clean speech signal. The quality of predicted features can be improved by providing additional side channel information that is robust to noise, such as visual cues. In this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07438  شماره 

صفحات  -

تاریخ انتشار 2017